Сверхпроводимость была открыта в 1911 году, но ее свойства и характеристики до сих пор не изучены в полной мере. Новое исследование на примере нанопроводов помогает понять, каким образом этот феномен теряется.
Проблема поддержания низких температур напитков жарким летом — классический урок по фазовым переходам. Их надо изучить, нагреть субстанцию и наблюдать за изменением ее свойств. При достижении так называемой критической точки добавьте воды или тепла — и наблюдайте за тем, как субстанция превратится в газ (либо пар).
А теперь представьте, что вы охладили все до очень низких температур — настолько, что пропали все термические эффекты. Добро пожаловать в квантовую реальность, где давление и магнитные поля никак не влияют на появление новых фаз! Этот феномен называется квантовым фазовым переходом. В отличие от обычного перехода, квантовый формирует абсолютно новые свойства, такие как сверхпроводимость (в некоторых материалах).
Если вы примените напряжение к сверхпроводящему металлу, электроны будут путешествовать через материал без сопротивления, а электрический ток будет течь бесконечно, без замедления или выделения тепла. Некоторые металлы становятся сверхпроводящими при высоких температурах, что важно в случае электропередач и при обработке данных, основанных на сверхпроводниках. Ученые открыли этот феномен 100 лет назад, но сам механизм сверхпроводимости остается загадкой, так как большинство материалов слишком сложные для того, чтобы понять физику квантового фазового перехода в деталях. Так что лучшая стратегия в этом случае — сосредоточиться на изучении менее сложных модельных систем.
Физики из Университета Юты обнаружили, что сверхпроводящие нанопровода, сделанные из молибденового германиевого сплава, проходят квантовые фазовые переходы от состояния сверхпроводимости до состояния обычного металла, если их поместить в обычное магнитное поле при низких температурах. Это исследование впервые выявило микроскопический процесс, при котором материал теряет свою сверхпроводимость: магнитное поле разбивает пары электронов — куперовские пары, взаимодействующие с другими такими же парами, — и они испытывают демпфирующую силу от непарных электронов, находящихся в системе.
Исследование детально описано в критической теории, предложенной Адрианом Дель Маэстро, доцентом Вермонтского университета. Теория точно описала, как эволюция сверхпроводимости зависит от критической температуры, величины магнитного поля и ориентации, площади поперечного сечения нанопровода и микроскопических характеристик материала, из которого он изготовлен. Это первый случай в области сверхпроводимости, когда все детали квантового фазового перехода предсказаны теорией, подтвержденной на реальных объектах в лаборатории.
«Квантовые фазовые переходы могут звучать очень экзотично, но они наблюдаются во многих системах — от центров звезд до атомных ядер, а также от магнитов до изоляторов, — говорит Андрей Рогачев, доцент Университета Юты и ведущий автор исследования. — Поняв квантовые колебания в этой более простой системе, мы можем говорить о каждой детали микроскопического процесса и применять его к более сложным объектам».